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Abstract: Arrays of processors with pipelined 
optical buses are introduced for the efficient 
implementation of computationally intensive 
applications. Techniques for the concurrent trans- 
mission of messages over the optical bus to avoid 
collision of messages is shown. Convenient paral- 
lel data movement operations are derived for this 
architecture, which are then used in the design of 
parallel algorithms for the solution of some 
important numerical problems. The parallel algo- 
rithms implemented in the paper are for solving 
systems of linear equations and finding the roots 
of nonlinear equations. Even though this array of 
processors can function in the MIMD mode of 
operation, it is more suitable for the SIMD mode 
of operation, because it can be easily synchronised 
and scaled to a massive number of processors. 
Hence, the above parallel algorithms have been 
designed with the SIMD mode in mind. Their 
time complexities have been analysed, and are 
shown to compare favourably with those imple- 
mented on processors connected with electronic 
buses or point-to-point links such as the hyper- 
cube. Moreover, whereas a processing element of 
a hypercube of size N has logN ports, a pro- 
cessing element of an array with optical buses has 
a constant number of ports. Thus, it seems that an 
array of processors with optical buses is a prom- 
ising, and could be a better, alternative for future 
supercomputing systems. 

1 Introduction 

Distributed-memory multicomputer systems hold an 
advantage over shared-memory multiprocessor systems 
when it comes to massive parallelism as they can be 
easily scaled up to a large number of processors. Most of 
the distributed-memory multicomputer systems use a 
static interconnection network (e.g. mesh or a hypercube) 
for the processors to communicate with each other [4]. 
One deficiency with these networks is that their commu- 
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nication diameter depends on the number of processors 
(size) of the system [17]. Hence, increasing the size of 
these networks would not result in a further decrease in 
the time complexities of most parallel algorithms (e.g. 
semi-group computations), which are lower-bounded by 
the communication diameter of these networks. One way 
to overcome this problem is to use buses for communica- 
tion as they provide direct communication between any 
two processors in the system [S, 111. However, messages 
cannot be transmitted concurrently by different pro- 
cessors on such buses, and thus these buses become a 
major bottleneck in the system, especially in 
communication-intensive algorithms. Another way to 
address the problem is to use reconfigurable buses [13], 
where messages can be transmitted concurrently when 
the bus is partitioned onto many segments; this also 
solves the diameter problem when all bus segments are 
reconfigured as a single global bus. However, when there 
are a large number of data to be transferred between dif- 
ferent sections of the network, the bus segments them- 
selves become a potential bottleneck for such a system 

To alleviate the above problems, researchers have pro- 
posed a distributed-memory computer with pipelined 
optical buses [14]. In such a system, messages can be 
transmitted concurrently by different processors, in a 
pipelined fashion on the optical bus, without partitioning 
the bus. This is mainly due to the unique properties of 
optical buses (waveguides), such as the unidirectional 
propagation of signals and the precise predictable path 
delays per unit distance. This, in turn, makes the pipe- 
lining of optical signals by the synchronised directional 
coupling of each signal at a specified location along the 
waveguide quite feasible. The time delay between the 
farthest processors along the waveguide is just the 
end-to-end transmission delay of light over the optical 
waveguide. This architecture has received a lot of atten- 
tion in the research community as it integrates the 
advantages of both optical transmission and electronic 
computation [3, 7,9, 12, 18-20]. Thus, the above proper- 
ties and the efficiency of bus structures to perform broad- 
casting and multicasting make this architecture suitable 
for quite a wide range of applications, especially 
communication-intensive applications. 

In this paper, we use a synchronous array of pro- 
cessing elements (PES), which employs an optical bus for 
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the transmission of messages between PES to implement 
some important mathematical algorithms. We review the 
basic principles of message pipelining on an optical bus 
and we introduce several fundamental parallel data 
movement operations on arrays of processors with pipe- 
lined optical buses, which we then incorporate into paral- 
lel algorithms to solve several computationally intensive 
numerical problems. Because of the unique features of a 
pipelined optical bus, many techniques are developed for 
the scheduling of the transmission and the reception of 
messages over the bus. Then, we present efficient parallel 
algorithms for the solution of important numerical prob- 
lems, such as solving systems of linear equations and 
finding the roots of nonlinear equations. Finally, we 
demonstrate that the time complexities of these algo- 
rithms compare favourably with those implemented on 
arrays with traditional electronic buses or point-to-point 
links. 

2 

A unique property of optics is its ability to pipeline the 
transmission of signals through a channel. In electronic 
buses, signals propagate in both directions, whereas 
optical channels are inherently directional and have 
precise predictable path delays per unit distance [3, 7, 9, 
14, 201. Consider the system of Fig. 1, where n pro- 

Array of processors with waveguides 

I DO 
c 

Fig. 1 
guide 

System of n processors connected with a single optical wave- 

cessors, each having a constant number of registers, are 
connected through a single optical waveguide (bus). Each 
processor is coupled to the optical waveguide with two 
passive couplers, one for injecting (writing) signals on the 
waveguide and the other for receiving (reading) signals 
from the waveguide. As in the case of electronic buses, 
each processor j communicates with any other processor 
i by sending a message to i through the common bus. 
However, because optical signals propagate in one direc- 
tion, a processor j may send signals to another processor 
i only if i j .  

Assume that a message on an optical bus consists of a 
sequence of pulses, each having a width w in seconds. The 
existence of an optical signal of width w represents a 
binary bit 1, and the absence of such a signal represents a 
0. For analytical reasons, we let Do be the optical dis- 
tance between each pair of adjacent nodes and T be the 
time taken for an optical pulse to traverse the optical 
distance D o .  To transfer a message from a node j to node 
i, i > j ,  the sender j writes its message on the bus. After a 
time (i - j )z, the message will arrive at the receiver i ,  
which then reads the message from the bus. 

The properties of undirectional propagation and pre- 
dictable path delays of optical signals can be used advan- 
tageously. Specifically, unlike the electronic case, where 
the writing access to the bus by each node must be 
mutually exclusive, all nodes in the system of Fig. 1 can 
write on the bus simultaneously, provided the following 
collision-free condition is satisfied [7, 9, 14, 201: 

Do > bwc, (1) 
88 

where b is the number of binary bits in each message, and 
c, is the velocity of light in the waveguide. Clearly, if this 
condition is satisfied and the system is synchronised such 
that every node starts writing a message on the bus at the 
same instant, then no two messages injected onto the bus 
by any two distinct nodes will collide. Here, by colliding 
we mean that two optical signals injected on the bus by 
any two distinct nodes arrive at some point on the bus 
simultaneously. With this condition satisfied, every node 
can, in parallel, send a message to some other node, and 
the messages will travel from left to right on the bus in 
pipelined fashion, as shown in Fig. 2. Thus, we use the 

Fig. 2 Message pipelining on the optical bus 

term pipelined bus. In the rest of the paper, we always 
assume that the collision-free condition eqn. 1 is satisfied. 
We term z as petit cycle, and nz as a bus cycle. Note that 
a bus cycle is the time taken for an optical signal to tra- 
verse the entire length of the optical bus. 

In the system of Fig. 1, messages can be transmitted 
only from left to right. To allow message-passing from 
right to left, another optical bus is used, as shown in Fig. 
3. In this Figure, we have two optical buses: the upper 

- 
Fig. 3 I-D APW with two optical waveguides 

one is used for sending messages from left to right, and 
the lower one is used for sending messages from right to 
left. Each node can write and read messages on either bus 
as desired. Obviously, signals in different buses do not 
disturb one another: that is the two buses can support 
two separate pipelines. The system in Fig. 3 is the archi- 
tecture of a linear array of processors with waveguides or 
a 1-D APW. 

To specify the time at which a node should receive a 
messsage, we introduce a function rwai,(i), which is defined 
as the time that node i should wait, relative to the begin- 
ning of a bus cycle, before reading the message sent to it 
from some other node j .  Thus 

twOit(i) = (i - j ) z  

If z is considered as a time unit, then twoit can be inter- 
preted in terms of the number of such units and thus be 
written twOi,(i) = i - j .  Clearly, if twoiJi) > 0, then the 
message is to be received from the left; if twai,(i) < 0, then 
the message is to be received from the right. If twai,(i) = 0, 
then no message should be received by node i. The value 
of twait(i) can be stored in a wait register, and more than 
one such register can be used if a node is to receive more 
than one message in one bus cycle. 

This twoit control function, however, has the disadvan- 
tages that it depends crucially on timing accuracy and is 
sensitive to the optical distance Do between two adjacent 
nodes. An equivalent control function rnwnit that does not 
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have these disadvantages can be defined if we require that 
each node inject a message, real or dummy, every bus 
cycle. In this case, we define mWait(i) as the number of 
messages that node i should skip before reading its 
message. For example, if mwoir(i) = y, then node i should 
receive the I y 1 th message that passes i on the bus. That 
is, it has to wait until I y I - 1 messages have passed and 
then it reads its own message. The sign of y determines 
on which bus the message should be received. Clearly, 
mWai, is equivalent to twair, and either control function can 
be used. For convenience, we simply write the control 
function as wait. 

The control function wait can only be used when the 
communication pattern is known to the receiver, in the 
sense that the receiver knows from which node the 
message is to be received. This is the case in most SIMD 
programming environments [7, 20, 221. In cases where 
the communication pattern is unknown to the receiver, 
the coincident pulse techniques [3, 121 can be used, such 
that an addressing pulse and a reference pulse coincide at 
the detector of the receiver, thereby addressing it. In this 
paper we use wait for addressing as the communication 
patterns are assumed to be known to the receiver. 

2.1 Message routing in a linear APW 
Various message-routing patterns can be realised in a 
simple, straightforward way. As a routing pattern is 
determined by the wait functions, we need only determine 
these wait functions for each routing pattern. The most 
common patterns are 

(a) one-to-one: The system executes a S E N D ( j ,  i )  
instruction, which means that a message is to be trans- 
ferred from node j to node i. Thus, wait(i) = i - j, where i 
is a single specific node. 

(b) broadcast: The system executes BROADCAST(j), 
which means that node j broadcasts a message, and all 
other nodes i will receive that message. In this case, 
wait(i) = i - j for all i # j. 

(c) permutations: For each node j to send a message to 
node i = PERM(j) ,  where PERM( ) is an arbitrary per- 
mutation, we set wait(i) = i - j for all i .  

We see that the computation of wait(i) is very simple and 
uniform. The only difference between the wait functions 
for different message-routing patterns is that the nodes 
involved are different. It is clear that all these communi- 
cation tasks can be performed using a single bus cycle. 
Note that, in a linear APW, message passing between 
two non-neighbouring nodes is nearly as efficient as that 
between two neighbours. Specifically, a message takes T 
more time to pass one more node on the optical bus. This 
is not the case in typical parallel computers with point- 
to-point connections, where to pass a node, en route to 
another node, a message has to go through a router. 
Moreover, z can be extremely small for tightly coupled 
parallel computer systems because of the small distance 
between neighbouring nodes and the high speed of optics. 

3 Two-dimensional APW 

The linear APW described above has some practical limi- 
tations [7-9, 201. First, the system size cannot be very 
large as it is limited by the minimum optical power that 
can be detected by the directional coupler of each PE, 
which is inversely proportional to the number of optical 
path lengths an optical pulse would traverse. Secondly, 
when the number of processors N is very large, the 
end-to-end transmission delay (waveguide cycle) 
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increases, as the condition stated by eqn. 1 has to be 
satisfied and the number of petit cycles is proportional to 
N .  To overcome these shortcomings in a linear APW, we 
consider a two-dimensional (2-D) APW. In a 2-D APW, 
each node is coupled to four buses, as shown in Fig. 4, 

Fig. 4 
guides 

2-D APW where each processor is connected to four waue- 

where the two horizontal buses are used for passing mes- 
sages horizontally in the same way as before, and the ver- 
tical buses are used for passing messages vertically in a 
similar way. Each node in a 2-D APW of size N = m x n 
will be given an identification (x ,  y), 0 < x  < m, 
0 < y < n, indicating the row-column position of the 
node. 

A unique issue that arises in the 2-D APW is the relay 
of messages. Specifically, suppose a message is to be 
transferred from node (xl, yl)  to node (x, , y,), with x 1  # 
x, and y1 # y, . Then, the message can first be sent from 
(xl, yl) to ( x l ,  y,), which is the node at the intersection of 
row x1 and column y,, in the first bus cycle (a row bus 
cycle), and then from (xlr y,) to (x, , y,)  in the second bus 
cycle (a column bus cycle). That is, the message has to be 
buffered at node (xi, y,) at the end of the first bus cycle 
and then relayed to its destination in the second bus 
cycle. For the purpose of relaying messages, we define a 
control function relay for node (xlr yz)  as 

relayC(xl, y2)1 = Y ,  - y1 

which indicates that node ( x l ,  y,) will read a message 
from a row bus at time I y, - y1 I (relative to the start of 
the row bus cycle) and then write that message on the 
proper column bus at the beginning of the following 
column bus cycle. 

Clearly, all the routing patterns described in the pre- 
ceding Section for the 1-D APW (one-to-one, broadcast, 
permutations) can be similarly implemented on the 2-D 
APW using the relay function. For more details, the 
reader is referred to References 7, 18 and 20. However, 
they are omitted in this paper because they are not 
directly needed for the implementation of our algorithms. 
Rather, as will be shown in the following Section, the 
routing patterns presented for the 1-D APW are suff- 
cient to implement our algorithms on the 2-D APW. 

4 

Problems arising in any scientific or engineering applica- 
tion of computers usually require the solution of some 
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mathematical problems. These mathematical problems 
span a wide range of applications and frequently involve 
the solution of some numerical problems that potentially 
could involve very complex systems of linear or nonlinear 
equations [l, 211. Because of the large number of equa- 
tions to be solved or the complexity of a single equation, 
these problems can be computationally intensive, and 
their solution could take an unreasonable amount of time 
on single-processor systems [l]. In this Section, we illus- 
trate the fruitful utilisation of arrays of PES with pipe- 
lined optical buses (e.g. 2-D APW) to provide fast and 
efficient solutions to some important numerical problems, 
namely the solution of systems of linear equations and 
finding the roots of nonlinear equations. Our algorithms 
are tuned towards fine-grain computations, where each 
PE holds just one element of the input. This is reasonable 
for massively parallel SIMD machines (e.g. CM-2). The 
largest number of PES that can be connected to an 
optical bus, under current technology, is in the order of a 
few hundred PES [3]. Thus, the size of our 2-D APW can 
be quite large (e.g. loo00 PES). In case the problem size is 
larger than the number of PES, the PES have to perform 
computations on a number of elements sequentially 
(subproblems). The solutions to these subproblems are 
merged together to obtain the solution to the whole 
problem. Hence, our algorithms' design would be slightly 
different from those given in this paper, and this might be 
a good direction for further research. 

4.1 Solving systems of linear equations 
Given an n x n matrix A and an n x 1 vector E, we are 
to solve the equation AX = B for the unknown n x 1 
vector X. When n = 3, as an example, we are required to 
find the values for xl, xz and x3 from the following 
system of linear equations: 

allXl + a l Z x Z  + a 1 3 x 3  = bl 

a Z I X t  + 'ZZX?. + a13x3 = b2 

a31x1 + a32 x2 + a33 x3 = b3  

Our parallel algorithm for the solution of the above 
problem on a 2-D array of PES with pipelined optical 
buses is essentially a parallelisation of the famous sequen- 
tial algorithm based on the Gauss-Jordan method [l, 
211. This method uses eqn. 1 of the system of linear equa- 
tions to eliminate x1 from all other equations through 
scaling and subtraction. Then, it uses eqn. 2 to eliminate 
x2 from all other equations through scaling and subtrac- 
tion. In general, it uses eqn. i to eliminate xi from all 
other equations. After that is done, our system of linear 
equations will have the following form: 

If we denote bi = then to eliminate x1 from all 
equations using eqn. 1 we have to perform the following 
transformation on the elements of matrix A :  

(3) 
In general, to eliminate xi from all equations using eqn. i, 
we have to perform the following transformations on the 
elements of matrix A :  

aik = a i k  - ailaidall 1 6 i < n 1 < k < n + 1 

a., =a ,  - a..a.Ja.. ,,, ,, l < i d n j < k < n + l  (4) 
90 

Then, once we have performed all the transformations, xi 
can be easily solved using the following equation: 

x. I = a. , , " + I b i i  (5 )  
The above method is used on a 2-D APW with nz + n 
PES that can be thought of as arranged in an n x (n + 1) 
array. That is, each row will contain n + 1 PES, and each 
column will contain n PES. Thus, each PE contains one 
element of the matrix A, and the last column of PES con- 
tains the elements of the vector B. Our parallel algorithm 
performs steps 1-4 given below n times, where, in each 
iteration, it succeeds in the elimination of one variable 
from n - 1 equations, and performs step 5 just once: 

S t e p  I: The PE holding the element a, sends this 
value to all other PES on the same column. This is basi- 
cally a broadcasting instruction along a column of PES. 
Then, each processor on that column performs the fol- 
lowing operation aij/ajj (keeping in mind that we are 
trying to perform the operation given by eqn. 4 above on 
each PE). 

S t e p  2: Each PE holding the value aij/ajj already cal- 
culated sends this value to all the PES in the same row. 
This is just a broadcasting instruction along the rows. 

S t e p 3 :  Each PE holding the element ajk broadcasts 
that element to all the PES in the same column. 

S t e p  4 :  All the PES now perform the operation of eqn. 
4, as each PE now contains all the elements required by 
eqn. 4. 

S t e p  5 :  Each PE in the last column holding the value 
sends that value to the PE in the same row 

holding the value aii . These latter PES perform the oper- 
ation required by eqn. 5 and, hence, the solution of the 
linear systems of equations. 

By looking at the steps of the algorithm, we see that steps 
1-4 are for the implementation of eqn. 4, and step 5 is for 
the implementation of eqn. 5. Then, analysing the time 
complexity of the above algorithm, we see that each of 
the steps 1-4 consists of broadcasting along the column 
or along the rows, which takes just one bus cycle. The 
computations involved in these steps take O(1) time. 
Thus, steps 1-4 take O(n) time as they have to be execute- 
d n times. Step 5 takes just one routing step and one 
computation step, thus, it takes O(1) time. Hence, the 
whole algorithm has O(n) time complexity. 

4.2 Finding the roots of nonlinear equations 
In many science and engineering problems, we are fre- 
quently asked to find the roots of a nonlinear equation 
with one variable, such as the following examples: 

x7 - ex + log x = 0 

x-' + sin x + x3 - 153 = 0 

To solve these types of equation, we have to resort to 
numerical algorithms, as, generally, it is impossible to 
find the solution analytically. A very simple and standard 
sequential numerical algorithm for this problem is the 
bisection method [l, 21). The idea is to represent our 
nonlinear equation by a continuous functionf(x). Then, if 
a, and bo are two values of the variable x, in such a way 
that f(ao)f(bo) < 0, that is, f (ao )  and f (b , )  have opposite 
signs, a zero of the functionfis guaranteed to exist in the 
interval (a,, bo). This means that one root of our nonlin- 
ear equation is guaranteed to exist in the interval (a,, bo). 
Once we have found the interval (ao, bo), we bisect it in 
the middle point m, = 1/2(a, + bo). Now, iff(ao)f(mo) < 
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0, then the root must be in the interval (al, b,) = (ao, 
m,); otherwise it is in the interval (al, bl),= (mo.  bo). 
Then, the above process is repeated on the interval (al, 
bl). Thus, we are trying to make the interval containing 
the root smaller and smaller until we obtain a very close 
approximation of it after n steps, that is, I b, - a,I < E, 
where E is a very small positive number chosen depending 
on the accuracy desired. 

We can use the bisection method on a 2-D APW using 
N processors. The idea is to conduct an (N + 1)-section 
search on the 2-D APW. The initial interval known to 
contain a zero of a function J (ao, bo), is divided into 
N + 1 subintervals of equal length. Then, each PE imple- 
ments the sequential bisection algorithm on its subinter- 
val. However, only one PE will succeed in finding the 
interval containing the root. Morever, that chosen sub- 
interval will be further subdivided into (N + 1) sub- 
subintervals. This process, as with the sequential 
algorithm, continues until we obtain a very close approx- 
imation of the root. The parallel algorithm implemented 
on a 2-D APW performs the following steps as long as 
the width of the interval containing the root is > E :  

(a) Bisect the interval into N + 1 equal subintervals. 
This is achieved by dividing the interval by N + 1 and is 
done simultaneously by all PES (duplicated). 

(b) Each PE assigns a single subinterval to itself, e.g. 
PE i is assigned subinterval i .  Only one subinterval is not 
assigned to any PE. 

(c) Each PE decides whether its subinterval contains a 
root or not by checking the sign of the multiplication of 
its boundary values, e.g. f ( x l ) f ( x z )  where x1 and x2 are 
the boundary values of the subinterval. Note, only one 
subinterval contains a root. 

(d) The PE containing the subinterval containing the 
root checks if the width of that interval is < E .  If that is 
true, then we have finished, as the root is equal to the 
value of any of the two boundaries of that interval. If the 
width of that interval is > E ,  then that PE broadcasts the 
values of the boundaries of its interval to all the PES, and 
steps a-d are performed again. 

(e) If none of the subintervals in the PES contains a 
root, then the unassigned subinterval must contain the 
root. Then, the boundary values of this subinterval are 
broadcasted to all the PES to perform steps a-d. 

All the above steps involve either 0(1) computation steps 
or broadcasting, which takes two bus cycles, as was 
shown in the data movement operations. Thus, each of 
the above steps takes 0(1) time. The number of iterations 
that steps a-e have to go through can be found as 
follows. After j iterations, the width of the interval is w/ 
(N + ly’, where w is the width of the initial interval, that 
is, w = I bo - a, 1 .  The iterative process terminates as 
soon as w/(N + ly’ < E. Thus, the number of iterations is 
O(log,+ l(w)). As steps a-e take constant time, then the 
above algorithm takes O(log,+ l (w))  time. The most con- 
suming parts of the algorithms are the function evalu- 
ation and the broadcasting operation, which are 
efficiently executed on such an architecture. 

5 Comparison with electronic parallel 

In the preceding Section, the computational power of the 
2-D APW was characterised by implementing two paral- 
lel algorithms for two important numerical problems. 
Here, the 2-D APW is compared with other parallel 
architectures, namely the hypercube [l, lo], the 2-D 

architectures 

IEE Proc.-Comput. Dig i t  Tech., Vol. 142, No.  2, March I995 

array of PES with electronic buses [2, 161 and the con- 
current read concurrent write (CRCW) ideal model of 
parallel computations [6]. 

The communication complexity of our algorithms is a 
function of the number of optical bus cycles. This is con- 
sistent with the analysis carried out by all researchers 
working on architectures having electronic buses or 
reconfigurable electronic buses [2, 131. The communica- 
tion complexity of their algorithms is a function of the 
electronic bus cycles. Further, owing to the high band- 
width of waveguides, an optical bus cycle is typically 
smaller than an electronic bus cycle when the two buses 
are equal in physical size. Hence, in our comparison with 
the 2-D array of PES with electronic buses, we assume 
that an optical bus cycle is equivalent to an electronic 
bus cycle, which is fair and reasonable. Consequently, our 
algorithm analysis is consistent with the analysis per- 
formed on electronic buses, which is directly related to 
the number of bus cycles. Even though our bus cycle 
might be a multiple number of pipeline (petit) cycles, we 
prefer to analyse our algorithms using bus cycles to be 
consistent with the analysis carried out on parallel archi- 
tectures using electronic buses. Hence, in this case, a fair 
comparison between using optical buses and electronic 
buses can he made. For more details, please see Refer- 
ences 2, 11, 13 and 16. 

On the other hand, for the hypercube, the communica- 
tion complexity of its algorithms is a function of the 
number of point-to-point link communications. However, 
these point-to-point link communications are not con- 
stant, as their length is not constant [S,  131. That is, not 
all the neighbours of a PE are at an equal distance from 
it, because of the layout properties of the hypercube. 
However, researchers into parallel algorithm design 
assume that the point-to-point communication time on 
the hypercube takes one cycle time, regardless of the 
length of the link being used. Thus, the cycle time of a 
point-to-point communication in a hypercube may or 
may not be larger than an optical bus cycle time; it is 
hardware and software dependent. Consequently, when 
comparing our algorithms with those on the hypercube, 
we leave the time complexity as a function of point-to- 
point communication time for the hypercube and of 
optical bus cycle time for the 2-D APW. 

The time complexity of the parallel algorithm for the 
solution of systems of linear equations is O(Nlog(N)) 
point-to-point communication cycle times when imple- 
mented on a hypercube of size O(N2)  [l, lo]. Thus, the 
2-D APW is more time eficient in solving this problem 
than the hypercube, as long as an optical bus cycle time 
is less than or equal to O(log (N)) x the point-to-point 
communication cycle time of the hypercube. Hence, even 
though a hypercube of the same size requires much more 
hardware and thus is much more expensive because it has 
many more ports per PE, e.g. 2 log (N) against 4, a 2-D 
APW has the potential of being more effective owing to 
its messages’ pipelining properties. 

If our algorithm for the solution of systems of linear 
equations is implemented on a 2-D array with electronic 
buses, it takes O(N7’6) time [16]. Hence, even though the 
hardware complexity of both architectures is the same, 
the effectiveness of optical buses can be clearly seen 
through the comparison of both time complexities, 
assuming that an optical bus cycle is equivalent to an 
electronic bus cycle. Again, the higher efficiency of a 2-D 
APW is due to its non-exclusive access to the optical 
buses. Finally, the solution of systems of linear equations 
takes O(N)  on a CRCW model with O(N2) PES [l, 231. 
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The CRCW model is an idealised parallel machine with 
shared memory, where it takes only one communication 
step to access any memory location. Moreover, simul- 
taneous read and simultaneous write to or from any 
memory location is allowed. This makes CRCW the most 
powerful model of parallel computations. However, we 
see that the time complexity of CRCW and that of the 
2-D APW are the same for this specific algorithm, if we 
assume that an optical bus cycle is equivalent to the 
access time of shared memory in the CRCW model. This 
is simply a confirmation of the effectiveness of this archi- 
tecture. 

For the second algorithm that implements the bisec- 
tion method to find the roots of nonlinear equations, it 
takes O(1ogAw) log (N)) on a hypercube of size N [l]. 
Thus, the 2-D APW is again more time and hardware 
efficient for this algorithm than the hypercube, as long 
as an optical bus cycle time is less than or equal to 
O(log (N)) x the point-to-point communication cycle 
time of the hypercube. This same algorithm takes 
O(N1l6 logdw)) on a 2-D array of PES with electronic 
buses [16], which is much slower than that on the 2-D 
APW having equivalent bus cycle times. Finally, when 
this algorithm is implemented on a CRCW model [l, 5, 
151, it has the same time complexity as that on the 2-D 
APW, when an optical bus cycle time is equivalent to the 
access time of the shared memory of the CRCW model. 
Hence, this comparison leaves no doubt about the good 
potential and usefulness of the 2-D array of PES with 
optical buses in the execution of computationally inten- 
sive algorithms and how favourable it can be when com- 
pared with other related architectures. Further, it has 
also been compared favourably with many other related 
architectures in the implementation of other parallel 
algorithms in other areas [8, 181. 

6 Conclusions 

We have presented a parallel architecture, a 2-D array of 
PES with pipelined optical buses (2-D APW), that 
exploits the advantages of optical communication and 
electronic computation. Some routing strategies for the 
efficient concurrent transmission of messages over the 
optical bus have been demonstrated. Then, we have 
implemented some fundamental parallel data movement 
operations on this architecture and analysed their time 
complexities. These data movement operations have been 
incorporated in the efficient design of parallel algorithms 
for the solution of important computationally intensive 
numerical problems. The time complexities of these 
parallel algorithms on the 2-D APW compare favourably 
with other related parallel architectures employing point- 
to-point links, such as the hypercube, or parallel architec- 
tures employing electronic buses, such as the 2-D array of 
PES, with electronic buses. Further, the time complexity 
of these algorithms on the 2-D array with pipelined 
optical buses is the same as those implemented on the 
most powerful parallel computer model, CRCW. Thus, it 

seems that the 2-D array of PES with pipelined optical 
buses is a very promising parallel supercomputing archi- 
tecture for the execution of computationally intensive 
applications. 
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